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LINEAR THEORY OF MICROPOIAR EIASTICITY

A. Cemal Eringen
Purdue University

ABSTRACT:

Equations of motion, constitutive equations and boundary
conditions are presented for a special class of micro-elastic
materials called Micropolar Solids. These solids respond to
micro-rotational motions and spin inertia and can support
couple stress and distributed body couples. The couple stress
theory is shown to emanate as a special case of the present
theory when the motion is constrained so that micro- and
macro-rotations coincide. Several energy and uniqueness

theorems are given.




1. INTROLUCTION

The theory of micromorvhic materials introduced by Eringen
and his co-workers [1] to [5] deals with a class substance which
exhibits certain microscopic effects arising from the local struc-
ture and micromotions of the media. These materials can support
stress moments and body moments and are influenced by the spin
inertia. The general theory is however very complicated and even
in the case of constitutively linear elastic solids [2] the differ-
ential equations are not easily amenable to solution.

To simplify the theory Eringen and Suhubi [2] introduced a
theory of couple stress., In view of the fact that in the abundent
recent literature the terminology of couple stress 1s used in a
different context we thought it may save the reader from confusion
if we name our theory "Micropolar elasticity". 1In contrast to the
couple stress thecry in micropolar elasticity all components of the
assymmetric stress tensor are determinate and the motion of the
media is fully described when the deformation and micro-rotation
vectors are known. The concept of micro-rotation and the corres-
ponding field equations are, of course, totally abeent in the couple
stress theory.

Physically, solids that are composed of dipole macromolecules
may be adequately represented by the model of the micropolar elasticity.
Fibrous materials and some granular and porous solids mey also fall
into the domain of this theory.

In Art. 2 we recapitulate the linear theory of microelasticity
given in [2] briefly in slightly different form. Art. 3 is devoted
to the derivations of the basic equations and boundary conditions of
micropolar elasticity. In Art. 4 it is shown that the couple stress
theory results as a special case of the micropolar theory when the

motion is constrained so that micro- and macro-rotations coincide.




Art. 5 18 devoted to a discussion of energy. Here we determine
the restrictions that must be imposed on the material constants
in order that the internal energy be non-negative. Two theorems

on uniqueness, one for the dynamical solutions, one for the

static case are given in Art. 6.




2. BASIC EQUATIONS

The theory of micro-elastic solids formulated in [1] and [2]
are based on a set of laws of motion and constitutive equations
some which are new to the mechanics of continua and others are
modifications and extensions of the well-known principles. The

basic laws are:

Conservation of mass:

dp :
So+ (ov,), =0 in "V (2.1)

Conservation of micro-inertia, [3]:

b}
.35‘1+1 v -1 v_ -1 v =0

% km,r T m rk kr m (2.2)
in VY
Balance of momentum:
+ - v = i .
o o(f, - v,) =0 n "V (2.3)
Balance of first stress moments:
t - B + x .
mt mt kfm,k + p(¢, -0, ) =0
Am Lm
(2.4)
in V
Conservation of energy:
¢ = -t
P =ty Yyt By Sg) Vi
4 (2.5)
* At Ve t Y PR Ao




Principle of entropy:

9 g
rep- (X - 20wV (26)

Thie inequality is being axiomatized to be valid for all

independent processes. In these equations

)\dm

Im

Q-

m

mass density

velocity vector

i = micro-inertia moments

mk

gyration tensor

stress tensor

body force per unit mass

slk = micro-stress average

the first stress moments

the first body moments per unit mass

inertial spin

internal energy density per unit mass

heat vector directed outward of the body

heat source per unit mass
entropy per unit mass

temperature

Throughout the present paper a rectangular coordinate system

(xl, xa, xj) is employed, Fig. 1. An index followed by a comma

represents partial differentiation with respect to space variables

and a superposed cot indicates material differentiation, i.e.
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aVk . ka
k0 % >, e T3¢ Yk, e (2.7)

Here and throughout this paper repeated indices denote summation
over the range (1,2,3). The foregoing equations are expressed in
Eulerian representation. However, in the linear theory of solids
the difference between the Eulerian and material representations
disappears since in calculating the time rates the convective
terms are ignored. Expressions (2.1) to (2.6) are valid at all
parts of the body B having volume VV and surface y , except
at finite number of discontinuity surfaces, lines and points. At
the surface Y of the body we have the boundary conditions

ey By = t,(!}-)z on Sﬂ (2.8)
)\:tm n = A(Q)tm on 9" (2.9)
where n is the exterior normal to Sﬂ end E(Q) and Z'\(E) are

respectively the surface tractions and surface moments acting on
y . For the spin inertia we have the kinematical relation

g (

PR ) (2.10)

v e v
We note that while equations (2.1) and (2.3) are well-known

from the classical theory, six equations (2.2) are entirely new

and nine equations (2.4) and the energy equation (2.5) are modified

and extended forms of the corresponding limited axioms. In fact

the skew-symmetric part of (2.4) is certainly new and, of course,

the kinematical variebles v ,b and i do not enter into the classical

k¢ ke
continuum mechanics.




If we exclude the phenomena of heat conduction, in the
present theory, the determination of motion requires the deter-

mination of the following nineteen unknowns

p(x,t) ikl(x"t) ’ Vk(lﬁyt) ’ Vk‘(z,)t) (2.11)

as against the four unknowns p and vk of the clessical theory.

The basic equations (2.1) to (2.5) are valid for all types of
media independent of their constitutions. The character of the
media are reflected through the constitutive equations. For micro-
elastic solid in [2] we gave sets of constitutive equations valid
for nonlinear deformations. Here produce only the linear theory

relevant to the present work. These are

by =[Oy rrle +mpe 15, +20u +0))e,
(2.12)
YRt Y1 ke
= 2 = P
Bkz [(7\l + 21)err + ( n, T)err] bki + 2(pl + Ol)ekl
(2.13)
+ (vl + K- ol) (ekz + sz)
%kzm - 11(¢kr,r 6mt * mrr,t mk) Al (¢ m!
o}
S et ) T 5 Vet W Ve ik
il (wrl,r mk ¢ mr,r kz) TG q)rm,r skz (2.14)
et 8%, t B o Pakym

T ¢ + o)
10 me,ke T 11 Vi,
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where kl, Ty nl, ul, ol, Kl’ vl and 11 to Tll are material
constants and ekz and €kt are respectively the strain tensor and
the microstrain tensor of the linear theory defined hy

e = ( +u, ) (2.15)
R R R R"
.16
ke ® %, 0t s (2.16)
It can be shown that (2] the arc length and the angle changes
1
can be calculated once these quantities and wkb E are known .
’
For the linear theory we also have
v =@ (2.17)

k! kZ

2
A thermodynamic discussion can be made showing that for a non-

heat conducting media

a=0 o a=-X (2.18)

-1
wvhere ¥ = ¢ - 6n is the free energy which depends on p and 6

only. Alternatively

v _ and used here correspond to v
) Pt P

and e and mkz of [3) and [5].

o and ¢1k of [1) and [2])

2For these and other interesting results we refer the reader to

(1], (3] and [5].




d¢

g=0 , o= % (2.19)

o

vhere € is considered to be a function of n and p-l.

Upon substitution of (2.15) and (2.16) into (2.12) and (2.13)
and the result and (2.14) into (2.3) and (2.4) together with (2.1),
(2.2), (2.10), (2.17) and ¥ = 1 we obtain just the right number

of partiel differential equations to determine the nineteen unknowns

olx,t) 4 (xt) yu(xt)  and @ (x,t).

Under appropriate boundary and initiel conditions these partial
differential equations should be adequate to predict the behavior
of micro-elastic solids.

The theory outlined above is too complicated for application.
The theory of micropolar elasticity presented below, however, not
only brings some elegance into the picture but also is simple

enough for mathematical treatments.




3. THEORY OF MICROPOLAR EIASTICITY

Definition. A body will be called micropolar elastic solid

1{ for all motions.

- P (3.1)

The motion of micropolar solids appears to have important
implications. Such materials are physically realistic. They
exhibit micro-rotational effects and can support body and surface
couples., Materials consisting of dumbbell macromolecules belong
to this class. Some fibrous and granular media are also approxi-
mated by this model.

By use of the skew symmetric properties of A and @ the basic

equations of such continua can be simplified a great deal. We

first define couple stress tensor mkr’ micro-rotation vector wr,

micro-angular velocity Vs micro-rotation inertia ér and body

couple tr by

% = % “rke %k

1 .2
Vr & 2 “rks sz (3:2)
6r = rkt .kl
L

= - 2
r & ekt ke

The couple stress tensor mkr has the same sign convention as the
stress tensor t Fig. 2.
&3 g
Upon using (3.2) in (2.4) and (2.5) these equations can be

expressed respectively as [5].
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+ € t +p(2 -6)=0 :
L T LR (3.3)
€ t e + v
B ek Sker Vet Tk Yook
(3.4)
+ ph
+ qk,k P
The boundary conditions (2.9) can be written as
m n = m(n_)k on y (3.5)
where m(n)k is the surface couple acting on y .
Similarly the constitutive equations for t and A can be
reduced to simpler forms. In simplifying the expressions of
A we make use of the skew-symmetry property of A and @ as
expressed by (3.1) and employ the expressions (3.2). This
leads to the following restrictions on the coefficients 'ca.
= = = .6
Tl = T, » T, =T 5 19 T (3.6)
Using (3.2)l and (3.2)2 and introducing a set of new elastic
coefficients by
a2t -Ty) B =2(r, - 1)
= 9 8 L >
(3.7)
= 2(-1, + - - +
y = 2( T, 15 1'7+ g 19 "10)
= +
A 7\1 'r+ql 5 ugpl-l-ol-i-vl
(3.8)
K=K, -V
-1 1
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we finally arrive at the constitutive equations

t =M 5 . + kw(u +uk)+K(uz

ke " rr ks Wi eer®) (39)

k

B = O T RO T 79 (5.10)

An alternative form to (3.9) is

= Ae

tkt rr 5k£ (

-9) (3.11)

+ +
(2u + k) e s r -

Ke
kdm

where rk is the rotation vector of the linear theory of elasticity
defined by

(3.12)

2
=ip

€
k kin um,l

In the present theory the stress average sk disappears from the

y/
equations.

For simplicity we consider micro-isotropic solids only. 1In

this case we have

1, = Uxt) o, (3.13)

Carrying this into (2.2) and recalling that v, ,6 = - Vv

ke Lk
we obtain
Di ,
el O or i = constent = j/2 on material lines (3.1%)

With this then the expression of inertial rotation becomes

(3.15)




The field equations of linear micropolar elasticity are
obtained by substituting (3.9), (3.10) into (2.3) and (3.3).

1l
Hence

(A + pu

+ K
gy T (8 F )Y

18 + Keumcpm,z + p(fk - uk) =0 (3.16)

(o + B)%,zk + wk,” bl g kg + p(zk-Jcpk) =MONI( BT

In the linear theory the density p is to be treated as constant

80 that no need arises for the use of the continuity equation (2.1).
Generally the integral of this equation for the linear theory is
used for the purpose of calculating small changes in density after

the displacement field is known. This is given by

po/P 1+ L (3.18)

The energy equation (3.4) with the use of (3.9) and (3.10)

becomes
= = d  + + Kkle A, + 2K - w -y )
pe = Ne bpp ¥ (Bu+ Koy 4 2x(n - @000 v
+ o v, . +B v o+ v (3.18)
P Ve, e TP%, 0Vt "k Vii
where wk is the vorticity vector defined by
1
==l .20
“ * 2 “kem “m, 2 (3-20)

Equation (3.19) can be integrated with respect to time to give

1
These equations can be made to coincide respectively with egs. (6.13)
and (5.14) of {2] by redefining material constants and using (3.2)2.
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1
e -pe =M et @ntc)e, e

P

t(r -9 Nr -9)+om 2,2 (3.21)

*PP r Pkt 7Pk Pk

where Py and eo are the mass density and internal energy in the

undeformed body. Without loss in generality we may take eo = 0,

In obtaining (3.21) in the spirit of the linear theory we assumed
that ¢ = 4. An alternative form to (3.21) is

pe =3 (5 le + €etm (T - 0] + 1, 9, ) (3.22)
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4, COUPLE STRESS THEORY
We now examine a special case of the above theory namely
the motion witk constraints
Q =r (4.1)

In this case the stress constitutive equations (3.3) reduce to

t, = Aerr bk‘ + (2p + K)ekz

vhich are identical to those of the classicael theory of elasticity
X

provided we replace p + 5 by u. The field equations (3.16)

now become

K K .
tutDu, ot gy el -g)=0

vhich are the celebrated equations of Navier with the replacement
of u for u + kf2. From equations (3.17) u drops out. Since ¢

is no longer an independent variable (3.17) fully determines the
body couple £ admissible for this class of motions. With this
viewpoint then the present thecry goes into the classical theory
of linear elasticity.

There is, however, another way of interpretation. Suppose
that (4.2) only determines the symmetric part of the stress teusor
i.e., write
%err + (2p + K)eu (4.2)

Yxe) ~ Ot
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wherea ( ) enclosing the paranthesis indicates the symmetric
part of & tensor and similarly a [ ] will be used to indicate

the skew-symmetric part of & tensor, i.e.

1 1
8= 2 (Bp * o) gy =3 (B, - 8y)
We now solve for the antisymmetric part t[u ] of the stress
tensor from the original equation (3.3) of the balance of moment
of momentum. By multiplying (3.3) by € ¥C first put it into
the form

1

t[kt] o 2 erkz mnr,n (4.3)

") 7 Oiey) = ©

Upon substituting (4.1) into (3.10) and (3.15) with (3.12) used

for r t
(o} kvege

M ™ 2 “gmn Vn,mk (4.4)
tee] = 9 Yk, 2] (4.5)
Substituting these into (4.3) we find
z . L
e "2 Ceyomn T k)t Py 0 V) (0O

Using (4.2) and (4.6) we calculate

e,k ™ Yen),k T Y]k

and substitute it into the equations of motion (2.3). Hence
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’ L LI
‘}‘+“+2+hv2)"k,!k+("+2 hvz)“z,kk
- By ) . _l 2.
"l Tt tP T eV (4.7)
ﬂ.'
2 Y, £k

2
where V is the laplacian operator in rectangular coordinates, 1.e.

Vau u
L~ L,kk

Equations (4.7) are the field equations of a theory xnown as the
couple stress theory. The present theory, therefore, for a con-

strained motion gives the couple stress theory.
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5. NON-NEGATIVE INTERNAL ENERGY

In this section we investigate the conditions that the elastic
moduli must be subjected to in order that the internal energy
density be non-negative. These conditions have important impli-
cations in regard to stability problems, wave propagations and

uniqueness theorems.

Tneorem 1. (non-negative internal energl). The necessary and

gsufficient conditions for the internal energy to gg non-negative

are

O<3A+2u+kK , 0<wmu , 0<«k
1
0<%+ 2y ’ -r<p<7r , 0<7 (5-1)
The sufficiency of (5.1) is proven by merely observing that when
these inequalitics hold each one of the following energies con-

stituting (3.21) ere non-negative

1
PeL 3 [Aekkezt + (2u + «) ek‘ezk] (5.2)
pep mklr, - @) (r, - 9) (5.3)
e == o + B + ] (5.4)
P =2 % k¥ PR 0%k T 7 k% ‘
resulting in
pe = p(eE + eR + €M) > 0 (5.5)

The fact that Pes is non-negative under the conditions (5.1)1,
(5.1)2 are well-known from the classical theory of elasticity.
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In fact these conditions are also sufficient to meke peE non-

negative, It is simplc to observe that for r & @k, pe >0

k R
if and only if k > 0. To see the same for pe” we write this

expression in the foras.
2

1 e
e =3latpryie 49, o) 20 (B 2T, )

r - 2 = - 2 - =12 2
+ + + + s (y¥p) | + 5.6
“”1,3-“’5,1) (¢2,3,¢5,2) (r +8) %0t %1 (5.6)
N AR
1,3 sel &,9 3,2
where upper signs go together and lower together and
Q= 5  + G P = 0
%% Prr %t % 0 %k (5
From (4.6) we see that in either case
30+B+7 >0 B>0 7-8 20 (5.8)
3a+B+y >0 B <O y+p >0 (5.9

we have Pe, > 0 so that (5.1) are sufficient to make pe,, > 0.
Cenditions (5.1) are also necessary for the non-negative-

ness of pe. To see this we first note that e - ¢k and mk p
2

o hss
ké® k
can be varied independently of each other. Since the above three
energies (5.2) to (5.4) are uncoupled with respect to these vari-
ables each one of these energies must be non-negative independent
of each cther. Certainly x > 0 is also necessary for peR to be
1
non-negative provided, of course, rk# ¢k . From classical eles-

ticity theory we also know that (6.1)l and (6.1)2 are necessary

and suff:- ent conditions for peE > 0. Hence we would like to

lFor rk = ¢k (the couple stress theory), K need not be restricted by

(5.1)z. However, in this case by writing 2p for 2u + Kk, kK disappears
from all equations.
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f£ind out if the last three conditions in (6.1) are necessary for

peM to be non-negative.

form in & nine dimensional space, i.e.

pe. = & 5 a . =8

M= %3 %Y 13~ %51
where
¥, = q’l,l ’ y2 = @2’2
Y, = <Pl,2 ’ y5 = ¢2,l
Y7 <P3’2 » YgE 4’3’1

ah'j = 3,67 = a89 = B
By ™ 5 " Bge " 877 " %8 " g9

all other a =0
iJ

The characteristic values ai of ai 3

equation

det(a.i -aai)-o

J J

The nine roots a1 of this equation are

al-a2-a§

a9=3a+[3+7

=y -8, ah-a5-a6-a

To this end write (L4.4) as a quadratic

are obtained by solving the

7-5,8-74.3




In order ai,j yi yJ > 0 to be satisfied to all y 1 it 1is

necessary (and sufficient) that
ry-20 ’ 7+p 20

3a+B+7_>_0

which 1s the proof of the theorem.

20

s R
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6. THE UNIQUENESS

The uniqueness theorem is a statement that the field
equations (3.16), (3.17) or in curvilinear coordinates

(A+2u4k) TV -n-(p+k) YXYXR+KT xOQ

-~

(6.1)
+p(L-u)=0
(0+B+7) YL X -7Y XY X0+ KT xu -2k
(6.2)
+0(L - J9) =0
possess unique solutions under certain boundary and initial
conditions’ for certain values of elastic modulii.
As the initial conditions we consider
u(x,0) = 1 (x) i Y (6.3)
1(x,0) = v, ()
#x,0) = 9 (2) in V (6.4)

:2(_35_,0) = !o(x)

where Eo’ Io’ 20 and xo are prescribed in V. We leave the
boundary conditions presently unspecified. Ultimately we intend

to show that variety of conditions are possible. For example u

and 9 may be specified on the boundary surface f/ of the body.

It 18 equally permissible to specify the tractions and couples

on S’ provided that they are in equilibrium. Many mixtures of
both are also possible. In fact, all admissible boundary conditions

allowing unique solutions must satisfy
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t([l)k u + m(!l)k 9 = 0 on Y , t>0 (6.5)

where u, .EE 5 Z(D.) and ﬁ(ll) are respectively the differences of
t and from their respective values on f/ 5
B2 X)) R

Theorem 2. (Uniqueness). Let the conditions (5.1), r,F @ and

J > 0 be satisfied in a bounded, regular domain’ “'l/ of space

- -

with boundary & . Then there exists at most onc w(x,t) and

one @(x,t) both twice continuously differentisble for x in ‘J/

+5’ and 0 < t < w, vhich satisfy (6.1) and (6.2), the initial

conditions (6.3), (6.4) and a set of boundary conditions compatible

with (6.5)

To prove this theorem suppose that contrary is valid and two

solutions

u(a) g(a) y  (a=1,2) (6.6)

4

exists satisfying (6.1) to (6.5). Ilet

Q= 2(1) - 2(2) ) Q= ;«g(l) - 2(2) (6.7)

Then clearly u and ¢ satisfy (6.1) and (6.2) with ¥ £ §0 and
the initial conditions

w(x,0) = u(x,0) = @x,0) = §(x,0) =0 (6.8)

let tki, ’ mkz s t(;}_)k and m(D.)k be respcctively the stress, couple
stress, surface traction and surface couple corresponding to the

solution (6.7), i.e.

1
The terminology ''regular domain of space' is used to denote domains

for which the Green-Gauss theorem is valid.
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(1) .(2) (1)  (2)
= - = 5 6.
Sr T %0 T %ke 0 Tke T T ke (6.9)
We compute the rate of the total internal energy
f; = O pe dv = /‘ pE dv
dt. o
Y
where we employed the continuity equation ———— =0 . Using

p dv
(3.4) with @ = 0, h = 0, this may be put into the form

-t -6t
ié /‘[(t 10’2 kT Cee,k’e T Skor e

v ]dv

+ o
( k  Mke ke

me¥y)

Applying Green-Gauss theorem to the first and fourth term and

l L[] L]
replacing tkz,k and mkl,k by their respective values (eqs. 2.3 and
(3.3) wich £ = £ =0) 1i.e.

Yo,k = Yy
= - € t o+ pdv
M8,k “pkr kr TPV
we obtain
‘E + j—{ =j1( (t 'z + mkzvz)nk da (6.10)
Y
where n is the exterior normal to y and
K w2 [ olvv + gv v Jav (6.11)
-2 v k k k 'k

is the total kinetic energy. If the boundary conditions are such

as to make the right hand side of (6.10) vanish we get

Ew+K()=c




2L

where C is a constant. Since both E and }{ are non-negative

we have

Z (0) + K (o) =0

Consequently

)+ K{t)=0, o0<t<e (6.12)

With J > O we have jﬁ non-negative. By virtue of (4.1) E is

non-negative. Therefore we must have
Z(t)=0 , K(t) =0 0<t <w

From the second of these it follows that since u (x,0) = ¢(x,0) =0

it follows that

u(x,t) = 0 »  P(x,t) =0 1n"V, 0<t<e

This means that o\ s 2(®) ana 9(l) - 9(2)

J Hence the proof of
the theorem.

Next we investigate the static case. For this we give the
following theorem which is the counterpart of the Clapeyron's

theorem in the classical elasticity theory.

Theorem 3. If a body is in equilibrium under a given system of

body loads f, £ and surface loads L(Q) and E(Q)’ then the internal

energy of deformation is equal to one-half of the work of external

loads that produce displacements and rotations u and @ from the

unstressed state. Mathematically




a5

f p(fklﬁc + lk¢k) dv +-g;(t(n)k\ﬁ‘ + m(n)ipk) da
v

= %Z;m dv

The proof of this theorem follows by forming the first integral

(6.13)

on the left and using Green-Gauss theorem. For

v-_--fp(fu+£q>)dv f[tszk zk,z

* €ty IR j\‘/(tzk“k o @) W

f (e, e * PRALWRIR L

By use of Green-Gauss theorem we convert the first integral on
the right to a surface integral. Upon using (3.22) in the second

ve get

V= j{y(t( )uk + m(n)k k) da -[/ 20€ dv

which is the proof of the theorem.
The above tbeorem can be used to prove:

Theorem 4. (Uniqueness of static solutions). Let the conditions

(5.1) vithu=9 =0 and ®, 7 r, be satisfied in 8 bounded, regular

domain 1V’ of space with boundary (¥ . Then there exists at

most one stress field tk P and one couple stress field mk P arising

from twice continuously differentieble displacement field wu(x) and

micro-rotation field o(x) satisfying
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t(n_)k = tok " m(n')k = on % (6.14)
uo=u » B =0 on & % (6.15)

1,2) be two distinct

Proof: let g(a) (x) and Qa) (%) , (a

solutions of (6.1) and (6.2)(with u = ¢ = 0) satisfying (6.14)

and (6.15). In view of the linearity of (6.1) and (6.2)

pe @ RPN C D)

are also the solution of these equations with vanishing f and £.

Consequently by the theorem 3 above we have

= . 6

f (1-.(&)k TN 9.) da zf pe dv (6.16)
(1) (2)

But on & we have E(Il) - m(ﬂ.)(I)o sin:;)both L(E) and ;h_(n)

have the common value t

and m and m the same value 0
<o (n) (n) Lo

Similarly on ¥ - ¥ , u= 9 =0. Tus (6.16) reduces to

[m dv = 0

¥
But becsuse of the conditions (5.1) this integral can vanish only
if

=0 - = (6.1

According to constitutive equations (3.10) and (3.11) then by =

mk g = 0. Hence the proof of the theorem.

The integral of (6.17)115

w o= A, x4 bk (6.18)




T

where th = - sz and bk are constants. Substituting (6.1€)

into (6.17)21:0 calculate T and using (3.12) we get
=
(pk k
where

T
k 2

GMm QmZ

is a rigid rotation. Ve therefore sce that the displaccient and
micro-rotation fields are determined within & rigid rotation and
translation. When Y# b4 # O we have the mixed boundary conditions.
Since in this case u = ¢ = 0 on Y -4 weseethat Q=Db=0
and the fields u and ¢ are uniquely detemnained.

In the case & = we have the traction boundary problem.

For this cese the fields u and ¢ are determined within a rigid

rotation and translation. When t, and m, are in equilibrium, i.e.

(f_t_o.dg._=0, I(gﬁ(;gxzo+go).dg_=0 (6.19)
4 N

then y and ¢ are again uniquely determined T "Mixed-Mixed" type
of boundary condition exists for which the soluticn of (6.1) and

(6.2) is unique. All such class of solutions must satisfy

Yk %t TPk " O

where t o X and P are the difference of
)’ ®n) B L ¥(n) 7 Bp)’ *

and ¢ from their respective values on & .




28
REFERENCES

(1] A. C. Eringen and E. S. Suhubi, Int. J. Engng. Sci.,
2, 189, 196k,

[2) E. S. Suhubi and A, C. Eringen, Int. J. Engng. Sci.,
2, 389, 1964,

(3] A. C. Eringen, Int. J. Engng. Sci., 2, 205, 196%.

(4] A. C. Eringen, Proc. Eleventh Intl. Congr. Appl. Mech..
Springer-Verlag, 1965.

(5] A. C. Eringen. Theory of Micropolar Fluids, ONR Tech.

Rept. No, 27, School of Aercnautics, Astronautics and

Engineering Sciences, Purdue University, 1965.




x}l

B
&
= -
2
™
Fig. 1 Coordinates
X
3
m
1 & 33
|l m
',/ .
i

P e
lJ.5
| >0
|

T2 - X

ml //‘.D_ U A ——— | — 5
s
4
e
s

*

Fig. 2 Positive Couple Stress Components




